关键词 |
销售锻造镁合金,锻造镁合金锻造镁轮毂,常德锻造镁合金,生产锻造镁合金 |
面向地区 |
全国 |
我们采用两步MDF工艺和人工时效,开发了尺寸为100 × 100 × 140 mm3的大型AZ80合金样品。设计的工艺与报道的MDF和老化工艺不同。T5处理后的试样具有均匀的力学性能,极限抗拉强度为430 MPa(工程应力),断裂延伸率为11.4%,达到了变形Mg-RE合金的水平。MDF在高温下提高了样品的可塑性,从而在180℃具有良好的可伪造性。MDF工艺引入的高密度缺陷包括晶界、位错和层错(SFs),这些缺陷加速了后续的老化响应。这种良好的强度-塑性协同作用是由细晶粒和粗晶粒组成的整体双峰组织、纳米级β-Mg17Al12析出相以及高密度的位错和层错同时作用的结果。由于镁合金的力学性能不依赖于添加特定元素而产生的强化机制,所设计的工艺可以使镁合金的整体性能受益。本工作为开发用于承重部件的大尺寸镁合金坯料提供了一条有效途径。
镁合金应该是工程应用中轻的结构金属材料,但目前它们在重要领域的实际利用并不令人满意。镁合金在室温下强度低,塑性差,直接限制了其大规模工业利用。实现商用镁合金的强度-延展性协同作用对于制造镁合金承重部件具有重要意义。近年来,可以使用严重的塑性变形(SPD)工艺来获得超细或细晶粒结构,从而提高金属的强度。Koch提到通过高压扭转(HPT)工艺和等通道角压(ECAP)工艺生产的超细晶粒尺寸金属实现了高强度。研究显示,在Mg-Gd-Y-Nd-Zr合金经过6次多向锻造(MDF)后,平均晶粒尺寸从200 μm减小到5.1 μm,屈服强度(YS)、极限抗拉强度(UTS)和失效伸长率(EF)显著增强。在SPD方法中,MDF工艺可以开发大尺寸钢坯,同时具有成本低,操作简单的优点。
大量研究集中在广泛使用的AZ系列镁合金的MDF工艺上,包括AZ80,AZ31,AZ61和AZ91合金。AZ80合金应该是工业中常用的商用镁合金之一。AZ80合金的开发成本低,因为没有添加稀土(RE)元素。张金龙等人在400 °C下通过24次MDF制备了极限抗拉强度为333.8 MPa,失效伸长率为17.8%的AZ80合金块,并表明由于锻件之间的加热,在MDF后期锻造道次增加,微观组织不会继续细化。周小杰等在初始锻造温度为360 °C,累积应变为1.8的情况下,用MDF制备了极限抗拉强度为388 MPa,失效伸长率为6.8%的AZ80合金。他们发现广泛的动态降水加剧了随后的老化效应。迄今为止报道的大多数MDF工艺都是在高温下进行的,因此可以实现更大的累积应变。然而,对于商用镁合金,如果不添加稀土元素,由于广泛的动态再结晶(DRX)和动态恢复(DRV)等软化机制,很难通过高温MDF开发高强度样品。一些学者提出了可以在室温下通过MDF开发的商用镁合金。Miura等研究了室温下MDF对挤压AZ80合金力学性能的影响,由于晶粒细化从20 μm到0.3 μm,MDF制备的 AZ80样品的屈服强度达到530 MPa,极限抗拉强度达到650 MPa。但报告的屈服强度和极限抗拉强度是真实应力,通常,锻件的强度是使用工程应力评估的。该过程只能通过一次锻造过程中的非常小的应变来实现,从而限制了其工业用途。此外,镁合金由于其可锻性差,在室温下锻造时容易开裂。
镁合金锻造的主要特点在于其变形温度范围较为狭窄,通常为70℃左右。通常情况下,在进行锻造时需要使用更高的温度,一般要将空白材料尽可能加热到高温度,以扩大锻造温度的范围,这一过程一般在150℃以下完成。为了防止过热,加热均匀,需要在有强制空气循环的电炉中加热,以加速热量传递,使炉内温度分布均匀,从而控制模锻空白的加热温度。在±5℃范围内。另外,镁合金在低速情况下表现出非常高的热塑性。为了避免裂纹,好用液压机锻造,也可以用机械压力机和螺旋压力机锻造,但不建议用锤模锻造。
锻造镁合金轮毂市场拓展进展很大,改装市场已经初具规模,车市场也已经实现选配。在汽车上应用的中大型镁合金零部件有仪表盘支架、座椅支架、中控支架、显示屏支架等,目前中大型镁合金零部件在汽车领域的覆盖率还较低,随着越来越多有设计能力的公司介入,产品价格降到合理价位,在汽车领域的渗透率将大幅提升。
镁合金作为一种轻量高强的金属材料,在工程领域中日益受到关注和重视。它以其低密度、高比强度和的机械性能成为未来材料之选。镁合金的背景和意义,介绍镁合金的特点及其在各个领域的应用,以及制备和改进的相关技术。通过对镁合金的全面解析,我们可以更好地了解这一新型材料的潜力和前景。
————— 认证资质 —————