有色金属镁合金河东供应导热镁合金材料供应导热.. 免费发布镁合金信息

河东供应导热镁合金材料供应导热镁合金材料

更新时间:2024-06-11 06:18:02 编号:bb2bapgj61c66f
分享
管理
举报
  • 118.00

  • 导热镁合金材料,高导热镁合金型材

  • 6年

陈先生

13651919798 3130787386

微信在线

产品详情

关键词
导热镁合金材料,河东导热镁合金材料,销售导热镁合金材料,供应导热镁合金材料
面向地区
全国
杂质含量
0.003
镁含量
99.5
粒度
1000目
品名
铝硅合金
牌号
5A06

河东供应导热镁合金材料供应导热镁合金材料

同铝合金一样,镁合金铸锭也常常显现裂纹,不过镁合金的裂纹敏感性比铝合金的轻得多,型式也有较大差别,也可以分为热裂纹与冷裂纹,不过镁合金的冷裂纹相当少见,仅在MB5和MB7合金锭中偶尔出现,因此镁合金的热裂纹废品量占95%以上。
  热裂纹
  铸锭在有效结晶区间形成的裂纹称热裂纹。在结晶区间内收缩困难是产生热裂纹的主要原因。合金在给定条件下,凡是能缩小脆性区温度范围、减少脆性区内收缩困难的因素都可以减小热裂纹敏感性。
  合金热裂纹敏感性高低可根据其脆性区内塑性A和线收缩ε的大小判断,即根据温度-塑性图可判断合金敏感性。还A大于0.5%的几乎不产生热裂纹。而当A=0时则称之为脆性区,这时产生热裂纹的几率可以说是了。合金脆性的上限≤固液区的上限,而其下限则≤固液区的下限。
  对镁合金热裂纹敏感性有影响的主要因素:合金成分与工艺因素。
  化学成分
  实验证明,凡是能细化晶粒的因素都能降低合金脆性区的上限,也就是可以缩小脆性的温度范围。因为晶粒越细,则越有利于晶间变形,减少结晶时的收缩阻力,裂纹就不会产生了。例如向Mg+4.5%Zn合金添加0.8%Zr,其固相线由344℃提高到550℃,脆性区缩小了206℃,同时还降低了固液区内的线收缩和提高了固液区的塑性,这三者都有利于消除热裂纹。
  另外,凡是增大共晶量的组元,都会提高合金的固液区内的塑性。因为增大共晶量,可增大晶界液膜厚度,从而有利于晶界变形,将大大改善补缩条件和裂纹“修复”条件,不但热裂数量减少,而且程度也显著减轻。
  共晶量和裂纹敏感性并不是呈线性关系,当共晶量小于其一极限值时,裂纹倾向性小,当增加到某一值后,敏感性骤升,再继续加大共晶量,则敏感性又下降,一直到零。

铸锭凝固时,随着冷却速度的加大,减小了脆性温度区间,提高了固液区的金属的塑性,有利于减少热裂纹。晶粒粗大的凝固着的锭的脆性温度也较大。过热合金熔体将使晶粒粗化,加大脆性温度范围,降低合金的塑性,从而加大脆性敏感性。
  晶粒形状也对脆性区范围和固液区的塑性大小有影响,柱状晶的不但脆性区较大,且其固液区的塑性也较低,因而易形成热裂纹。
  铸造速度、铸造温度、冷却强度、铸锭尺寸及形状都对铸锭凝固速度有着直接影响,因而直接影响铸锭的内应力、脆性区大和固液区的塑性。在铸造镁合金锭时,不能同时不适当地加大铸造速度与冷却强度,否则会加大热裂纹敏感性。镁合金有较大的热裂纹敏性,裂纹的分布形式主要与工艺条件有关,常见形式有表面裂纹和发状裂纹。
  冷裂纹
  铸锭中的冷裂纹是在凝固以后形成的,是当铸锭冷却到低于不平衡固相线温度以下时,由于铸锭收缩困难造成的,即取决于当时铸锭的内应力大小和塑性高低。铸造应力可分为热应力、相变应力和收缩阻力。在连续铸造时,镁合金的相变应力可不考虑,主要是其余的两种应力,但是收缩力也不大,同时可调控,因此,热应力是主要的,所以冷裂纹取决于在固态时铸锭内部热应力的大小和塑性高低。
  热应力的产生是由于铸锭内外各层间的收缩不同步与收缩系数的相异,例如直径530mm MB15合金圆锭,在铸造速度为33.6cm/min时,中心部分的平均冷却速度为48℃/min,而外表层的为58℃/min,这种差别必然导致收缩系数不一样,另外各层的收缩时间也不同步,表皮先收缩,中心后收缩,这就会使铸锭内部产生应力。一旦这种热应力超过铸锭的屈服Rp0.2,就会形成冷裂纹。
  热应力大小除与线膨胀系数α及温差有关外,还与合金的正弹性模E有关,镁合金的E小,只有45000N/mm2,热应力也会小一些。另外,在镁合金铸造过程中所允许的结晶速度较低,产生的热应力不大,故镁合金铸锭产生冷裂纹的几率不高。

镁合金的熔炼铸造工艺与铸锭品质对镁材质量、成品率高低攸攸相关,实践统计证明,镁材缺陷的75%以上都或多或少是由于铸锭带来的。镁合金锭的铸造的铸造工艺有:铁模铸造,水冷模铸造与半连续铸造。前两种工艺现在很少用了,所生产的锭坯还不到总数的5%。半连续铸造法的优点可概括为:

凝固速度快,改善了铸锭组织,减少了成分偏析,提高了锭坯的力学性能。

由于改善了熔铸系统,减少了氧化夹杂及其他非金属夹杂物,金属杂质含量也有所下降,合金纯净得到了很大提高。熔铸设备对MA8合金的纯净度也有一定的影响。

合理的结晶顺序,铸锭的致密度得到提高,锭中心的疏松大幅度地下降。

锭的长度有很大提高,切头、切尾等几何废料的相对量有很大减小。

实现了机械化或甚至半自动化生产,劳动条件得到很大改善,劳动生产率显著提高,产品品质也有很大提高。

当然,尽管半连续铸造法的优点很多,不可避免地也会存在一些不足之处,诸如:

铸锭内部因凝固速度快,会产生很大的内应力,而合金的塑性又不大,因而裂纹倾向性大,废品率比铁模铸造时的大得多,铁模铸造几乎无一裂纹。

由于凝固速度快,有些合金元素如锰会产生较严重的晶内偏析,为了消除这种缺陷,须进行长时间的均匀化退火,因而生产成本上升,而且性能得不到充分的。

由于凝固速度大,液穴内的温度梯度也会相应地上升,虽不利于金属中间化合物颗料的过于长大,但却使它易于产生。

面聊了铸造镁合金的熔炼,现在来谈谈变形镁合金的熔炼。熔炼变形镁合金多用反射炉,其炉型与铝合金熔炼的相当。镁合金的熔炼过程为:烘炉、洗炉、配料、装炉、熔化、扒渣、加合金元素、转炉、精炼、静置。
  烘炉
  新筑砌炉和中修反射炉在熔炼前烘炉。严格按烘炉曲线进行烘炉,时间不短于264h:由室温缓慢地在109h内升至300℃,在300℃保温24h,然后均匀地在25h内升至400℃,保温48h,再在58h内升至900℃完成烘炉。超过240h的停炉后也务必烘炉,时间不短于72h。烘炉很重要,对炉的寿命有重要影响。
  洗炉
  新炉与中修后的反射炉在使用前都要进行一次洗炉,以防合金杂质含量升高与去除砖缝中的一部分非金属夹杂及气态夹杂物,在所熔炼合金转组时也应洗一次炉,例如由熔炼Mg-Al-Zn-Mn系合金转熔Mg-Mn系或Mg-Zr系合金,由Mg-Mn系合金转熔Mg-Zr系合金都要洗炉。洗炉用重熔用镁锭或熔剂,装炉量达炉容积的1/2处,升温至760℃~800℃,充分搅拌两次,静置几分后放尽。
  配料
  按车间配料标准配料,所有原辅材料务必清洁干燥,无混料,复化料一般不大于40%,所用的镁锭、铝锭、锌锭、混合铈稀土、锆氟酸钾、氯化锰等的品质与化学成分都应符合有关标准。
  装炉、熔化及扒渣
  装炉前与炉底均匀地铺一层粉状二号熔剂(质量%:38~46Mgcl2、32~40KCl、5~8BaCl2、3~5CaF2),然后装料,先装碎的,后装镁锭,后装大块废料,装得尽可能密实平整,装完后撒一层薄的二号熔剂,升温熔化,炉内气氛应呈微还原性。
  在熔炼过程中应严防镁的燃烧,一旦燃烧,立即用二号熔剂熄灭。炉料化平后,扒次渣,扒渣宜平稳,熔体温度升到750℃~770℃时扒第二次渣,渣要把扒尽,但又尽可能地不带出或少带出溶融镁。扒完渣后搅拌一次,静置几分钟后取样分析,取样温度(℃):MB1、MB8合金的780~800,MB2、MB3、MB5、MB7合金的720~740,MB15合金的780~800。在熔炼过程中按有关规程加入合金化元素,但铝锭、锌锭可随同炉料一起装料,生产MB15合金时,可用纯锆盐,也可用混合锆盐(K2ZrF6+CaF6+LiCl)或Mg-Zr中间合金加锆,加纯锆盐(K2ZrF6、K2ZrCl6、ZrCl4)时熔体温度900℃~920℃,以后两种方式加锆的温度800℃~920℃。
  转炉
  经炉前化学分析熔体成分合格温度为750℃~780℃时即可进行转炉,装熔体转入静置炉进行精炼。转炉方法有:静压差法,适于两个炉膛不位于同一水平上,打开流口,熔体便可自动流出;虹吸法;离心泵法;电磁泵法。中国当前多用种方法。
  精炼
  镁合金熔体总或多或少地含有一些非金属夹杂物和气体(主要是氢),因此进行精炼,以去除这些异物,提高合金的各项性能。精炼温度730℃~760℃,精炼熔剂用量为约10kg每吨镁合金熔体,精炼时间约10min。
  除Mg-Li合金外,其他合金均可以用五号熔剂(质量%)精炼:20~35MgCl2、16~29KCl、8~12BaCl2、14~23MgF2、0.5~8.0BaO3。精炼后向熔体表面撒一层精炼剂,静置60min后铸造。
  含锆的镁合金不用含Al和Mn的氟化物的熔剂精炼,可用四号熔剂;不采用二号熔剂精炼Mg-Mn系和Mg-RE系合金,因为会有熔剂夹杂存在。应尽量缩短含锂和稀土合金的熔炼与精炼时间,以减少烧损,必要时还要补料。对熔炼炉与静置炉应及时清炉,熔炼炉转炉完了和静置炉铸造终了都要清炉。用五号熔剂的精炼时间不短于60min,它可用于精炼所有的变形镁合金。

用仪表板横梁通常采用钢管和钢板冲压件组合焊接制造,此类钢制仪表板横梁总成的组成零件数量多,需要焊接组装,不利于尺寸控制,且整体重量大,不符合轻量化理念。而根据文献报道,采用镁合金压铸的仪表板横梁可减重50%以上,轻量化效果非常明显。主要是因为镁合金是目前应用的金属结构材料中轻的,具有密度小,比强度和比刚度高,阻尼性、切削加工性和铸造性能好等优点,因此镁合金仪表板横梁在国外汽车产品中得到广泛的应用。
  本文主要从设计选材、结构优化和性能验证等方面,简要介绍AM60B镁合金在奇瑞某车型的仪表板横梁上的应用情况。
  镁合金仪表板横梁的特点
  镁合金仪表板横梁与钢制仪表板横梁相比具有以下特点:
  (1)轻量化 镁合金的密度为1.78g/cm3,仅为钢密度的1/4,减重在50%以上。
  (2)零件集成化程度高,尺寸稳定 与钢制件相比,镁合金仪表板横梁采用整体压铸的生产工艺,可以把传统钢质CCB的20多个零件集成为一个件。
  (3)安装尺寸精度高 由于采用整体压铸,尺寸精度很高,所有的尺寸公差都可以控制在0.5mm以内,解决目前钢骨架安装过程中的干涉和异响等问题。
  (4)设计灵活 由于采用压铸工艺,产品工艺性好,零件形状的设计自由度大。
  (5)绿色环保 镁合金材料可以回收利用。
  镁合金的选择
  目前镁合金的种类有很多,汽车工业采用较多的是AM系和AZ系合金,常用镁合号主要有AM60B和AZ91D。其中AM60B的铝含量较低,由于随着铝含量的降低,材料的韧性逐渐增高,故与AZ91D相比,AM60B的韧性和塑性较好。AM60B是高纯牌号,因此具有和AZ91D一样优良的耐蚀性能,且与A380铝合金相比,耐蚀性更加。
  本文所介绍的仪表板横梁形状复杂、体积庞大而且壁厚不均,要求承载各种仪表仪器,因此需具有较高的韧性和强度。通过综合考虑AM60B和AZ91D的性能以及参考有关文献资料,终决定选用AM60B(性能见表1)作为制造仪表板横梁的材料。
  表1 AM60B镁合金的化学成分和物理性能

镁合金零件早期采用金属型重力铸造,经研究发现,由于镁合金的熔点低、密度低,大多数合金的流动性比较好,且比热容低,容易获得较高的冷速,因而在适中的压力下可以获得理想的铸件。根据相关报道,奥迪某款车型的镁合金仪表板横梁,在装有自动浇注机构的锁模力为24.5MN的冷室压铸机上成功实现压铸,因此本文介绍的镁合金仪表板横梁采用冷室压铸是完全可行的。
  针对仪表板横梁的结构性能要求,结合AM60B的疲劳性能对内在缺陷非常敏感的特点,仪表板横梁的压铸工艺过程中要求压铸过程充型平稳,实现顺序凝固,避免各种铸造缺陷的发生。这样才能在得到缺陷少、品质高的铸件的同时,提高生产效率,也为实现新材料在仪表板横梁上应用奠定了工艺基础。

留言板

  • 导热镁合金材料高导热镁合金型材河东导热镁合金材料销售导热镁合金材料供应导热镁合金材料
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

公司资料

上海隆司新材料科技有限公司
  • 陈顺华
  • 上海 青浦
  • 有限责任公司
  • 2016-05-18
  • 人民币1000万
  • 5 - 10 人
  • 其他有色金属制品
  • 镁基合金材,铝基合金材,钛基合金材,镍基合金材
小提示:河东供应导热镁合金材料供应导热镁合金材料描述文字和图片由用户自行上传发布,其真实性、合法性由发布人负责。
陈先生: 13651919798
在线联系: 3130787386
让卖家联系我