关键词 |
生产新型超塑性镁合金,供应新型超塑性镁合金,供应新型超塑性镁合金,漳平新型超塑性镁合金 |
面向地区 |
全国 |
近些年,超细晶材料由于强度受到广泛关注。然而,较差的塑性阻碍了其应用和发展。近期,研究发现混晶组织的引入可实现的强塑性结合。合金成分和含量显著影响混晶组织形成及演化过程。混晶组织的形成主要是由于不完全动态再结晶所致。对于高合金含量镁合金(如AZ91),易形成大量的第二相,这些第二相将对再结晶行为产生双重影响,即促进或阻碍再结晶。大尺寸第二相颗粒将通过颗粒诱导再结晶(PSN)机制促进再结晶;同时,沿晶界分布的亚微米级第二相产生钉扎作用,抑制再结晶行为,从而形成混晶组织。
现在人们也认识到,ECAP加工在AZ31合金中产生了的超塑性性能,分析表明晶界滑动可能是控制速率的机制。
实际上,AZ31合金是一种单相镁合金,预计在高温超塑性变形过程中,第二相的缺失将导致动态晶粒长大。近的一项分析证明了在镁合金中保持非常小的晶粒尺寸对于超塑性流动的重要性。
镁(Mg)合金由于其固有的低密度和高比强度,是有前途的轻质结构材料,特别是在交通运输和航空航天领域。大多数高强度镁合金在室温下表现出较差的成形性和延展性,这限制了它们的广泛应用。通过适当的合金化设计和/或精细的微观结构控制,一些新开发的镁合金包括稀土 (RE) 和不含稀土的镁合金,在不显著降低强度的情况下表现出增强的延展性。本文为了找出其中的关键原因,从合金化设计策略和加工技术的微观结构控制等方面回顾了近期关于韧性镁合金的研究。在这篇综述中,本文从合金化设计策略和通过加工技术进行的微观结构控制方面回顾了具有增强延展性的镁合金的新发展。它可以通过适当的合金化设计与智能微结构控制相结合,为制造具有增强的成形性和延展性的镁合金提供见解。
————— 认证资质 —————